Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(3): 388-404, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193852

RESUMO

Inactivating mutations in PTEN are prevalent in melanoma and are thought to support tumor development by hyperactivating the AKT/mTOR pathway. Conversely, activating mutations in AKT are relatively rare in melanoma, and therapies targeting AKT or mTOR have shown disappointing outcomes in preclinical models and clinical trials of melanoma. This has led to the speculation that PTEN suppresses melanoma by opposing AKT-independent pathways, potentially through noncanonical functions beyond its lipid phosphatase activity. In this study, we examined the mechanisms of PTEN-mediated suppression of melanoma formation through the restoration of various PTEN functions in PTEN-deficient cells or mouse models. PTEN lipid phosphatase activity predominantly inhibited melanoma cell proliferation, invasion, and tumor growth, with minimal contribution from its protein phosphatase and scaffold functions. A drug screen underscored the exquisite dependence of PTEN-deficient melanoma cells on the AKT/mTOR pathway. Furthermore, activation of AKT alone was sufficient to counteract several aspects of PTEN-mediated melanoma suppression, particularly invasion and the growth of allograft tumors. Phosphoproteomics analysis of the lipid phosphatase activity of PTEN validated its potent inhibition of AKT and many of its known targets, while also identifying the AP-1 transcription factor FRA1 as a downstream effector. The restoration of PTEN dampened FRA1 translation by inhibiting AKT/mTOR signaling, and FRA1 overexpression negated aspects of PTEN-mediated melanoma suppression akin to AKT. This study supports AKT as the key mediator of PTEN inactivation in melanoma and identifies an AKT/mTOR/FRA1 axis as a driver of melanomagenesis. SIGNIFICANCE: PTEN suppresses melanoma predominantly through its lipid phosphatase function, which when lost, elevates FRA1 levels through AKT/mTOR signaling to promote several aspects of melanomagenesis.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/genética , Melanoma/metabolismo , Transdução de Sinais/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Lipídeos
2.
Sci Signal ; 16(815): eadi9018, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085818

RESUMO

The nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor activates cytoprotective and metabolic gene expression in response to various electrophilic stressors. Constitutive NRF2 activity promotes cancer progression, whereas decreased NRF2 function contributes to neurodegenerative diseases. We used proximity proteomic analysis to define protein networks for NRF2 and its family members NRF1, NRF3, and the NRF2 heterodimer MAFG. A functional screen of co-complexed proteins revealed previously uncharacterized regulators of NRF2 transcriptional activity. We found that ZNF746 (also known as PARIS), a zinc finger transcription factor implicated in Parkinson's disease, physically associated with NRF2 and MAFG, resulting in suppression of NRF2-driven transcription. ZNF746 overexpression increased oxidative stress and apoptosis in a neuronal cell model of Parkinson's disease, phenotypes that were reversed by chemical and genetic hyperactivation of NRF2. This study presents a functionally annotated proximity network for NRF2 and suggests a link between ZNF746 overexpression in Parkinson's disease and inhibition of NRF2-driven neuroprotection.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Repressoras/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Correpressoras , Proteômica
3.
Cancer Res ; 82(17): 3016-3031, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052492

RESUMO

Somatic copy-number alterations (CNA) promote cancer, but the underlying driver genes may not be comprehensively identified if only the functions of the encoded proteins are considered. mRNAs can act as competitive endogenous RNAs (ceRNA), which sponge miRNAs to posttranscriptionally regulate gene expression in a protein coding-independent manner. We investigated the contribution of ceRNAs to the oncogenic effects of CNAs. Chromosome 1q gains promoted melanoma progression and metastasis at least in part through overexpression of three mRNAs with ceRNA activity: CEP170, NUCKS1, and ZC3H11A. These ceRNAs enhanced melanoma metastasis by sequestering tumor suppressor miRNAs. Orthogonal genetic assays with miRNA inhibitors and target site blockers, along with rescue experiments, demonstrated that miRNA sequestration is critical for the oncogenic effects of CEP170, NUCKS1, and ZC3H11A mRNAs. Furthermore, chromosome 1q ceRNA-mediated miRNA sequestration alleviated the repression of several prometastatic target genes. This regulatory RNA network was evident in other cancer types, suggesting chromosome 1q ceRNA deregulation as a common driver of cancer progression. Taken together, this work demonstrates that ceRNAs mediate the oncogenicity of somatic CNAs. SIGNIFICANCE: The function of CEP170, NUCKS1, and ZC3H11A mRNAs as competitive endogenous RNAs that sequester tumor suppressor microRNAs underlies the oncogenic activity of chromosome 1q gains.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Carcinogênese/genética , Cromossomos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Melanoma/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
4.
RNA Biol ; 19(1): 353-363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289721

RESUMO

Circular RNAs (circRNAs) are a class of non-coding RNAs featuring a covalently closed ring structure formed through backsplicing. circRNAs are broadly expressed and contribute to biological processes through a variety of functions. Standard gain-of-function and loss-of-function approaches to study gene functions have significant limitations when studying circRNAs. Overexpression studies in particular suffer from the lack of efficient genetic tools. While mammalian expression plasmids enable transient circRNA overexpression in cultured cells, most cell biological studies require long-term ectopic expression. Here we report the development and characterization of genetic tools enabling stable circRNA overexpression in vitro and in vivo. We demonstrated that circRNA expression constructs can be delivered to cultured cells via transposons, whereas lentiviral vectors have limited utility for the delivery of circRNA constructs due to viral RNA splicing in virus-producing cells. We further demonstrated ectopic circRNA expression in a hepatocellular carcinoma mouse model upon circRNA transposon delivery via hydrodynamic tail vein injection. Furthermore, we generated genetically engineered mice harbouring circRNA expression constructs. We demonstrated that this approach enables constitutive, global circRNA overexpression as well as inducible circRNA expression directed specifically to melanocytes in a melanoma mouse model. These tools expand the genetic toolkit available for the functional characterization of circRNAs.


Assuntos
MicroRNAs , RNA Circular , Animais , Mamíferos/genética , Camundongos , MicroRNAs/genética , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Viral/genética
5.
JID Innov ; 2(2): 100076, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146482

RESUMO

Murine cancer cell lines are powerful research tools to complement studies in genetically engineered mouse models. We have established 21 melanoma cell lines from embryonic stem cell-genetically engineered mouse models driven by alleles that model the most frequent genetic alterations in human melanoma. In addition, these cell lines harbor regulatory alleles for the genomic integration of transgenes and the regulation of expression of such transgenes. In this study, we report a comprehensive characterization of these cell lines. Specifically, we validated melanocytic origin, driver allele recombination and expression, and activation of the oncogenic MAPK and protein kinase B pathways. We further tested tumor formation in syngeneic immunocompetent recipients as well as the functionality of the integrated Tet-ON system and recombination-mediated cassette exchange homing cassette. Finally, by deleting the transcription factor MAFG with an inducible CRISPR/Cas9 approach, we show the utility of the regulatory alleles for candidate gene modulation. These cell lines will be a valuable resource for studying melanoma biology and therapy.

6.
Methods Mol Biol ; 2324: 287-304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34165722

RESUMO

Aberrant expression of pseudogenes has been observed in many cancer types. Deregulated pseudogenes engage in a multitude of biological processes at the DNA, RNA, and protein levels and eventually facilitate disease progression. To investigate pseudogene functions in cancer, cell lines and cell line transplantation models have been widely used. However, cancer biology is best studied in the context of an intact organism. Here, we present various strategies to investigate pseudogenes in genetically engineered mouse models and discuss advantages and disadvantages of the different approaches.


Assuntos
Neoplasias Experimentais/genética , Pseudogenes/genética , Animais , Linhagem Celular Tumoral , Resistência Microbiana a Medicamentos/genética , Células-Tronco Embrionárias , Regulação da Expressão Gênica , Genes Sintéticos , Xenoenxertos , Humanos , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Transplante de Neoplasias , Regiões Promotoras Genéticas , Interferência de RNA , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Especificidade da Espécie , Tetraciclina/farmacologia , Regulação para Cima
7.
Cancers (Basel) ; 13(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808771

RESUMO

The miR-29 family of microRNAs is encoded by two clusters, miR-29b1~a and miR-29b2~c, and is regulated by several oncogenic and tumor suppressive stimuli. While in vitro evidence suggests a tumor suppressor role for miR-29 in melanoma, the mechanisms underlying its deregulation and contribution to melanomagenesis have remained elusive. Using various in vitro systems, we show that oncogenic MAPK signaling paradoxically stimulates transcription of pri-miR-29b1~a and pri-miR-29b2~c, the latter in a p53-dependent manner. Expression analyses in melanocytes, melanoma cells, nevi, and primary melanoma revealed that pri-miR-29b2~c levels decrease during melanoma progression. Inactivation of miR-29 in vivo with a miRNA sponge in a rapid melanoma mouse model resulted in accelerated tumor development and decreased overall survival, verifying tumor suppressive potential of miR-29 in melanoma. Through integrated RNA sequencing, target prediction, and functional assays, we identified the transcription factors MAFG and MYBL2 as bona fide miR-29 targets in melanoma. Our findings suggest that attenuation of miR-29b2~c expression promotes melanoma development, at least in part, by derepressing MAFG and MYBL2.

8.
Cancer Res ; 80(4): 912-921, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31744817

RESUMO

The cumbersome and time-consuming process of generating new mouse strains and multiallelic experimental animals often hinders the use of genetically engineered mouse models (GEMM) in cancer research. Here, we describe the development and validation of an embryonic stem cell (ESC)-GEMM platform for rapid modeling of melanoma in mice. The platform incorporates 12 clinically relevant genotypes composed of combinations of four driver alleles (LSL-BrafV600E, LSL-NrasQ61R, PtenFlox, and Cdkn2aFlox) and regulatory alleles to spatiotemporally control the perturbation of genes of interest. The ESCs produce high-contribution chimeras, which recapitulate the melanoma phenotypes of conventionally bred mice. Using the ESC-GEMM platform to modulate Pten expression in melanocytes in vivo, we highlighted the utility and advantages of gene depletion by CRISPR-Cas9, RNAi, or conditional knockout for melanoma modeling. Moreover, complementary genetic methods demonstrated the impact of Pten restoration on the prevention and maintenance of Pten-deficient melanomas. Finally, we showed that chimera-derived melanoma cell lines retain regulatory allele competency and are a powerful resource to complement ESC-GEMM chimera experiments in vitro and in syngeneic grafts in vivo Thus, when combined with sophisticated genetic tools, the ESC-GEMM platform enables rapid, high-throughput, and versatile studies aimed at addressing outstanding questions in melanoma biology.Significance: This study presents a high-throughput and versatile ES cell-based mouse modeling platform that can be combined with state-of-the-art genetic tools to address unanswered questions in melanoma in vivo See related commentary by Thorkelsson et al., p. 655.


Assuntos
Células-Tronco Embrionárias , Melanoma/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Melanócitos , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética
9.
Oncotarget ; 9(1): 3-20, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416592

RESUMO

Here we present an innovative computational-based drug discovery strategy, coupled with machine-based learning and functional assessment, for the rational design of novel small molecule inhibitors of the lipogenic enzyme stearoyl-CoA desaturase 1 (SCD1). Our methods resulted in the discovery of several unique molecules, of which our lead compound SSI-4 demonstrates potent anti-tumor activity, with an excellent pharmacokinetic and toxicology profile. We improve upon key characteristics, including chemoinformatics and absorption/distribution/metabolism/excretion (ADME) toxicity, while driving the IC50 to 0.6 nM in some instances. This approach to drug design can be executed in smaller research settings, applied to a wealth of other targets, and paves a path forward for bringing small-batch based drug programs into the Clinic.

10.
Endocr Relat Cancer ; 22(5): 777-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206775

RESUMO

Anaplastic thyroid carcinoma is a highly aggressive undifferentiated carcinoma with a mortality rate near 100% due to an assortment of genomic abnormalities which impede the success of therapeutic options. Our laboratory has previously identified that RhoB upregulation serves as a novel molecular therapeutic target and agents upregulating RhoB combined with paclitaxel lead to antitumor synergy. Knowing that histone deacetylase 1 (HDAC1) transcriptionally suppresses RhoB, we sought to extend our findings to other HDACs and to identify the HDAC inhibitor (HDACi) that optimally synergize with paclitaxel. Here we identify HDAC6 as a newly discovered RhoB repressor. By using isoform selective HDAC inhibitors (HDACi) and shRNAs, we show that RhoB has divergent downstream signaling partners, which are dependent on the HDAC isoform that is inhibited. When RhoB upregulates only p21 (cyclin kinase inhibitor) using a class I HDACi (romidepsin), cells undergo cytostasis. When RhoB upregulates BIMEL using class II/(I) HDACi (belinostat or vorinostat), apoptosis occurs. Combinatorial synergy with paclitaxel is dependent upon RhoB and BIMEL while upregulation of RhoB and only p21 blocks synergy. This bifurcated regulation of the cell cycle by RhoB is novel and silencing either p21 or BIMEL turns the previously silenced pathway on, leading to phenotypic reversal. This study intimates that the combination of belinostat/vorinostat with paclitaxel may prove to be an effective therapeutic strategy via the novel observation that class II/(I) HDACi antagonize HDAC6-mediated suppression of RhoB and subsequent BIMEL, thereby promoting antitumor synergy. These overall observations may provide a mechanistic understanding of optimal therapeutic response.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Carcinoma Anaplásico da Tireoide/patologia , Proteína rhoB de Ligação ao GTP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Western Blotting , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Sinergismo Farmacológico , Citometria de Fluxo , Desacetilase 6 de Histona , Humanos , Ácidos Hidroxâmicos/farmacologia , Técnicas Imunoenzimáticas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/metabolismo , Ativação Transcricional , Células Tumorais Cultivadas , Regulação para Cima , Vorinostat , Proteína rhoB de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...